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Abstract

We compare the classes of behaviours (transition systems) which can be generated by

normed BPA and normed BPP processes. We exactly classify the intersection of these two

classes - i.e. the class of transition systems which can be equivalently (up to bisimilarity)

described by the syntax of normed BPA and normed BPP processes.

Next we show that it is decidable whether for a given normed BPA (resp. BPP) process

� there is some (unspeci�ed) normed BPP (resp. BPA) process �

0

such that � is bisimilar

to �

0

. Moreover, if the answer is positive then our algorithm also constructs the process �

0

.

As an immediate (but very important) consequence we also obtain the decidability of

bisimilarity in the union of normed BPA and normed BPP processes.

1 Introduction

We consider the relationship between classes of transition systems, which are generated by

normed BPA and normed BPP processes. BPA processes can be seen as simple sequential

programs (they are equipped with a binary sequential operator). This class of processes has

been intensively studied by many researchers. Baeten, Bergstra and Klop proved in [?] that

bisimilarity is decidable for normed BPA processes. Much simpler proofs of this were later given

by Caucal ([?] and Groote ([?]). In [?] Hüttel and Stirling used a tableau decision method and

gave also sound and complete equational theory. This result was later extended to the whole

class of BPA processes by Christensen, Hüttel and Stirling ([?]).

If we replace the binary sequential operator with the parallel operator, we obtain BPP

processes. They can be thus seen as simple parallel programs. Christensen, Hirsfeld and Moller

proved in [?] that bisimilarity is decidable for BPP processes.

An interesting problem is, what is the exact relationship between BPA and BPP processes,

i.e. what is the relationship between sequencing and parallelism. It is well-known that there are

BPA (resp. BPP) processes for which there is no bisimilar BPP (resp. BPA) process. But there

are also behaviours (transition systems), which can be equivalently (up to bisimilarity) described

by both BPA and BPP syntax. A natural question is, whether it is possible to classify all such

processes (up to bisimilarity). A related problem is whether there is an algorithm, which for a

given BPA (resp. BPP) process � constructs a bisimilar BPP (resp. BPA) process �

0

if such a

�

0

exists, and answers NO otherwise.

In this paper we answer (positively) both these questions for normed subclasses of BPA and

BPP processes. As an important consequence we also obtain the decidability of bisimulation

equivalence in the union of normed BPA and normed BPP processes.
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In many constructions of our paper we use the fact that regularity is decidable for normed

BPA and normed BPP processes (a process is regular if it is bisimilar to a process with �nitely

many states). Regularity of BPA processes was examined for the �rst time by Mauw and Mulder

in [?], but their notion of regularity is di�erent from the usual one. Ku£era showed in [?] that

the result of Mauw and Mulder can be used to decide regularity of normed BPA processes and

that regularity of normed BPP processes is also decidable.

2 Basic de�nitions, preliminary knowledge

2.1 BPA and BPP processes

Let Act = fa; b; c; : : :g be a countably in�nite set of atomic actions. Let Var = fX;Y;Z; : : :g be

a countably in�nite set of variables, such that Var \Act = ;. The classes of recursive BPA and

BPP expressions are de�ned by the following abstract syntax equations:

E

BPA

::= a j X j E

BPA

:E

BPA

j E

BPA

+E

BPA

E

BPP

::= a j X j aE

BPP

j E

BPP

kE

BPP

j E

BPP

+E

BPP

Here a ranges over Act and X ranges over Var. The symbol Act

�

denotes the set of all �nite

strings over Act.

As usual, we restrict our attention to guarded expressions. A BPA or BPP expression E is

guarded if every variable occurence in E is within the scope of an atomic action.

A guarded BPA (resp. BPP) process is de�ned by a �nite family � of recursive process

equations

� = fX

i

def

= E

i

j 1 � i � ng

where X

i

are distinct elements of Var and E

i

are guarded BPA (resp. BPP) expressions, con-

taining variables from fX

1

; : : : ;X

n

g. The set of variables which appear in � is denoted by

Var(�).

The variable X

1

plays a special role (X

1

is sometimes called the leading variable - it is a root

of a labelled transition system, de�ned by the process � and following rules:

a

a

! �

E

a

! E

0

E:F

a

! E

0

:F

E

a

! E

0

E + F

a

! E

0

F

a

! F

0

E + F

a

! F

0

E

a

! E

0

EkF

a

! E

0

kF

F

a

! F

0

EkF

a

! EkF

0

E

a

! E

0

X

a

! E

0

(X

def

= E 2 �)

The symbol � denotes the empty expression with usual conventions: �kE = E, Ek� = E and

�:E = E. Nodes of the transition system generated by � are BPA (resp. BPP) expressions,

which are often called states of �, or just �states� when � is understood from the context. We

also de�ne the relation

w

!, where w 2 Act

�

, as the re�exive and transitive closure of

a

!. Given

two states E;F , we say that F is reachable from E, if E

w

! F for some w 2 Act

�

. States of �

which are reachable from X

1

are said to be reachable.

Remark 1 Processes are often identi�ed with their leading variables. Furthermore, if we assume

a �xed process �, we can view any process expression E (not necessarily guarded) whose variables

are de�ned in � as a process too; we simply add a new equation X

def

= E

0

to �, where X is a

variable from Var such that X 62 Var(�) and E

0

is a process expression which is obtained from E

by substituting each variable in E with the right side of its corresponding de�ning equation in �

(E

0

must be guarded now). Moreover, X becomes a new leading variable. All notions originally

de�ned for processes can be used for process expressions in this sense too.
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2.1.1 Bisimulation

The equivalence between process expressions (states) we are interested in here is bisimilarity [?],

de�ned as follows:

De�nition 1 A binary relation R over process expressions is a bisimulation if whenever [E;F ] 2

R then for each a 2 Act

� if E

a

! E

0

, then F

a

! F

0

for some F

0

such that [E

0

; F

0

] 2 R

� if F

a

! F

0

, then E

a

! E

0

for some E

0

such that [E

0

; F

0

] 2 R

Processes � and �

0

are bisimilar, written � � �

0

, if their leading variables are related by some

bisimulation.

2.1.2 Normed processes

An important subclass of BPA (resp. BPP) processes can be obtained by an extra restriction

of normedness. A variable X 2 Var(�) is normed if there is w 2 Act

�

such that X

w

! �. In

that case we de�ne the norm of X, written jXj, to be the length of the shortest such w. Thus

jXj = minfLength(w) j X

w

! �g. A process � is normed if all variables of Var(�) are normed.

The norm of � is then de�ned to be the norm of X

1

.

Remark 2 As normed processes are intensively studied in this paper, we emphasize some prop-

erties of a norm:

� A norm of a normed process is easy to compute:

jaj = 1; jE + F j = minfjEj; jF jg; jE:F j = jEj+ jF j; jEkF j = jEj + jF j; and if X

i

def

= E

i

and jE

i

j = n, then jX

i

j = n.

� Bisimilar processes must have the same norm.

� Each transition E

a

! E

0

where a 2 Act can decrease the norm of E at most by one.

Moreover, if jEj = n then for each k; 0 � k < n there exists w 2 Act

�

, Length(w) = k

such that E

w

! E

0

where jEj = n� k.

2.1.3 Greibach normal form

Any BPA (resp. BPP) process � can be e�ectively presented in so-called 3-Greibach normal

form (see [?] and [?]). Before the de�nition we need to introduce the set Var(�)

�

of all �nite

sequences of variables from Var(�), and the set Var(�)




of all �nite multisets over Var(�).

Each multiset of Var(�)




denotes a BPP expression by combining its elements in parallel using

the 'k' operator.

De�nition 2 A BPA (resp. BPP) process � is said to be in Greibach normal form (GNF) if

all its equations are of the form

X

def

=

n

X

j=1

a

j

�

j

where n 2 N , a

j

2 Act and �

j

2 Var(�)

�

(resp.�

j

2 Var(�)




). If Length(�

j

) � 2

(resp. card(�

j

) � 2) for each j; 1 � j � n, then � is said to be in 3-GNF.

>From now on we assume that all BPA (resp. BPP) processes we are working with are presented

in GNF. This justi�es also the assumption that all reachable states of a BPA process � are

elements of Var(�)

�

and all reachable states of a BPP process �

0

are elements of Var(�

0

)




.
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Remark 3 If � is a normed BPA (resp. BPP) process in GNF and � is a reachable state of

� such that j�j = 1, then � is composed of a single variable from Var(�). With the help of

Remark ?? we can conclude that for each state � of � there are v 2 Act

�

; Length(v) = j�j � 1

and V 2 Var(�); jV j = 1 such that �

v

! V .

Notation remark 1 In the rest of this paper we let greek letters �; �; : : : to range over reachable

states of a BPA resp. BPP process � in GNF. Occasionally we will also use the notation �

i

with

the following meaning:

�

i

= �:� � � ��

| {z }

i

if � is a state of some BPA process in GNF

�

i

= �k� � � � k�

| {z }

i

if � is a state of some BPP process in GNF

2.2 Regular processes

Many proofs in this paper take advantage of the fact that regularity of normed BPA (resp. BPP)

processes is decidable. The next de�nition explains what is meant by the notion of regularity:

De�nition 3 A process � is regular if there is a process �

0

with �nitely many states such that

� � �

0

.

It is easy to see that a process is regular i� it can reach only �nitely many states up to bisimilarity.

In [?] it is shown, that regular processes can be represented in the following normal form:

De�nition 4 A regular process � is said to be in normal form if all its equations are of the

form

X

def

=

n

X

j=1

a

j

X

j

where n 2 N , a

j

2 Act and X

j

2 Var(�).

Thus a process� is regular i� there is a regular process�

0

in normal form such that� � �

0

. Now

we present several propositions which concern regularity of normed BPA (resp. BPP) processes.

Proofs can be found in [?].

Proposition 1 Let � be a normed BPA (resp. BPP) process. It is decidable whether � is

regular. Moreover, if � is regular then a regular process �

0

in normal form such that � � �

0

can be e�ectively constructed.

De�nition 5 (growing variable) Let � be a normed BPA (resp. BPP) process. A variable

Y 2 Var(�) is growing if Y

w

! Y:� (resp. Y

w

! Y k�) where w 2 Act

�

and � 2 Var(�)

�

such

that Length(�) � 1 (resp. � 2 Var(�)




such that card(�) � 1).

Proposition 2 A normed BPA (resp. BPP) process � is non-regular i� Var(�) contains a

growing variable Y such that there is a reachable state of the form Y:� where � 2 Var(�)

�

(resp. the state Y is reachable).

Remark 4 If � is a normed BPA (resp. BPP) process and � is a BPA (resp. BPP) expression

whose variables are de�ned in �, then Proposition ?? can be applied also to � - each such expres-

sion denotes a process in the sense of Remark ??. Namely variables of � are BPA (resp. BPP)

expressions - hence we can also speak about regular variables.

The following lemma can be easily proved using Proposition ?? and Remark ??:

Lemma 1 Let � be a normed BPA (resp. BPP) process which is not regular. Then � can reach

a state of an arbitrary norm.
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3 The classi�cation of nBPA \ nBPP

In this section we give an exact classi�cation of normed BPA (resp. BPP) processes which can

be equivalently de�ned using BPP (resp. BPA) syntax.

De�nition 6 (the class nBPA \ nBPP) Let nBPA (resp. nBPP) denote the class of all

normed BPA (resp. BPP) processes. We de�ne the class nBPA \ nBPP in the following way:

nBPA \ nBPP = f� 2 nBPA j 9�

0

2 nBPP such that � � �

0

g [

f� 2 nBPP j 9�

0

2 nBPA such that � � �

0

g

The class nBPA \ nBPP can be seen as a �semantic intersection� of nBPA and nBPP. To simplify

our analysis, we will often assume that processes we are working with are reduced :

De�nition 7 (reduced processes) Let � be a normed BPA (resp. BPP) process in GNF. We

say that � is reduced if

1. variables of Var(�) are pairwise non-bisimilar

2. for each V 2 Var(�) there is a reachable state of the form V:� (resp. the state V is

reachable).

As bisimilarity is decidable for normed BPA (resp. BPP) processes (see [?],[?],[?]), the �rst

condition can be assumed w.l.o.g. Variables which do not ful�l the second condition cannot

contribute to the behaviour of � and they can be e�ectively recognised (and removed). Hence

we can assume (w.l.o.g) that a normed BPA (resp.BPP) process � is reduced.

As we shall see, each process of nBPA \ nBPP can be presented in a special normal form:

De�nition 8 (I-normal form) A normed BPA (resp. BPP) process � is said to be in I-normal

form if all its equations are of the form

X

def

=

n

X

j=1

a

j

X

k

j

j

where n 2 N , a

j

2 Act, X

j

2 Var(�) and k

j

2 N [ f0g. If aZ

k

is a summand in a de�ning

equation of � such that k � 2, then the variable Z is called simple and its de�ning equation in

� is of the form

Z

def

=

m

X

j=1

a

j

Z

k

j

where m 2 N , a

j

2 Act and k

j

2 N [ f0g. Moreover, there is l 2 f1; : : : ;mg such that k

l

� 2.

Finally, we also require that all variables from Var(�) are reachable and pairwise non-bisimilar

(i.e.� is reduced).

A BPA process in I-normal form has an interesting property - if we modify its de�ning equations

by replacing each occurence of the sequential operator with the parallel operator, we obtain a

bisimilar BPP process. An analogous statement holds for BPP processes in I-normal form.

De�nition 9 (dual processes) Let � be a BPA (resp. BPP) process in I-normal form. We

de�ne the dual BPP (resp. BPA) process � in the following way:

� for each Y 2 Var(�) we �x a variable Y 2 Var such that Y 62 Var(�).
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� de�ning equations in � are obtained from de�ning equations of � by replacing each variable

Y by Y and each occurence of the sequential (resp. parallel) operator with the parallel

(resp. sequential) operator.

Lemma 2 Let � be a BPP (resp. BPA) process in I-normal form. Then � � �.

Proof: It is easy to check that the relation

R = f[Y; Y ] j Y 2 Var(�)g [ f[Z

i

; Z

i

] j Z 2 Var(�); Z is simple; i 2 N [ f0gg

is a bisimulation relating leading variables of �;� (see Notation remark ??). 2

An immediate consequence of Lemma ?? is the following proposition:

Proposition 3 Let � be a normed BPA (resp. BPP) process in I-normal form. Then � 2

nBPA \ nBPP.

Now we prove that each process from nBPA \ nBPP is bisimilar to a process in I-normal form.

Several auxiliary de�nitions and lemmas are needed:

De�nition 10 (Assoc sets) Let � be a normed reduced BPP process in 3-GNF. For each

growing variable Y 2 Var(�) we de�ne the set Assoc(Y ) � Var(�) in the following way:

Assoc(Y ) = fP 2 Var(�); Y

u

! P for some u 2 Act

�

g [

fP 2 Var(�); PkY is a reachable state of �g

A variable L 2 Var(�) is lonely if L 62 Assoc(Y ) for any growing variable Y 2 Var(�).

Lemma 3 Let � be a normed reduced BPP process in 3-GNF such that � 2 nBPA \ nBPP.

Let Y 2 Var(�) be a growing variable. Then there is exactly one variable Z

Y

2 Var(�) such

that:

� Z

Y

is non-regular and jZ

Y

j = 1

� if P 2 Assoc(Y ) then P � Z

jP j

Y

and Z

Y

is reachable from P

� if a� is a summand in the de�ning equation for Z

Y

in � then � � Z

j�j

Y

Proof: As Y is growing, there are w 2 Act

�

and � 2 Var(�)




; � 6= ; such that Y

w

! Y k�. As

� is normed and in GNF, there are v 2 Act

�

and Z

Y

2 Var(�); jZ

Y

= 1j such that �

v

! Z

Y

(see

Remark ??). Note that Z

Y

is reachable from Y . Let P 2 Assoc(Y ). We prove that P � Z

jP j

Y

.

First we show that the state PkZ

i

Y

is reachable for each i 2 N . By the de�nition of Assoc set

there are two possibilities:

1. Y

u

! P for some u 2 Act

�

. As � is normed and reduced, the state Y is reachable (see

De�nition ??). But then Y

w

i

! Y k�

i

u

! Pk�

i

v

i

! PkZ

i

Y

2. PkY is a reachable state. As � is normed, Y

x

! � for some x 2 Act

�

. Now PkY

w

i

!

PkY k�

i

x

! Pk�

i

v

i

! PkZ

i

Y

6



As � 2 nBPA \ nBPP, there is a normed BPA process �

0

in GNF such that � � �

0

. Let

n = jP j, m = maxfjAj; A 2 Var(�

0

)g. The state PkZ

n:m

Y

is a reachable state of � and therefore

there must be a reachable state  2 Var(�

0

)

�

of the process �

0

such that PkZ

n:m

Y

� . Bisimilar

states must have the same norm, hence  is a sequence of at least n+1 variables (see Remark ??)

-  = A

1

:A

2

: : : A

n+1

:� where � 2 Var(�

0

)

�

. As jP j = n, there is s 2 Act

�

, Length(s) = n such

that P

s

! � - hence PkZ

n:m

Y

s

! Z

n:m

Y

. The state A

1

:A

2

: : : A

n+1

:� must be able to match the norm

reducing sequence of actions s. As Length(s) = n, only the �rst n variables of A

1

:A

2

: : : A

n+1

:�

can contribute to the sequence s, i.e.A

1

:A

2

: : : A

n+1

:�

s

! �:A

n+1

:� where � 2 Var(�

0

)

�

. As �

0

is normed, there is t 2 Act

�

, Length(t) = j�j such that �:A

n+1

:�

t

! A

n+1

:�. The state Z

n:m

Y

can

match the norm reducing sequence t in only one way - by removing Length(t) copies of Z

Y

(each

norm reducing action must be matched by a norm reducing action and jZ

Y

j = 1):

PkZ

n:m

Y

� A

1

: : : A

n+1

:�

?

?

y

s

?

?

y

s

Z

n:m

Y

� �:A

n+1

:�

?

?

y

t

?

?

y

t

Z

n:m�j�j

Y

� A

n+1

:�

Now let k = Length(s) + Length(t) (i.e. k = jA

1

: : : A

n

j). Clearly k � n:m. As jZ

Y

j = 1, there is

p 2 Act

�

, Length(p) = k such that PkZ

n:m

Y

p

! PkZ

n:m�k

Y

. The norm reducing sequence p must

be matched by A

1

:A

2

: : : A

n+1

:�. As Length(p) = k = jA

1

: : : A

n

j, we have A

1

:A

2

: : : A

n+1

:�

p

!

A

n+1

:� and PkZ

n:m�k

Y

� A

n+1

:�. By a simple transitivity argument we now obtain PkZ

n:m�k

Y

�

Z

n:m�j�j

Y

. From this we can easily conclude that P � Z

jP j

Y

(we can remove all copies of Z

Y

from

PkZ

n:m�k

Y

in n:m� k steps and the state Z

n:m�j�j

Y

must be able to match this sequence of norm

reducing actions by removing n:m�k copies of Z

Y

- it is easy to see that n:m�j�j�(n:m�k) =

jP j).

As the variable Y is non-regular and Y � Z

jY j

Y

, the variable Z

Y

is also non-regular. Moreover,

Z

Y

is a unique variable with the property P � Z

jP j

Y

for each P 2 Assoc(Y ). It follows from

the fact that � is reduced - let us assume that there is another variable C 2 Var(�) with this

property. Then e.g. Y � C

jY j

and thus C

jY j

� Z

jY j

Y

. From this we can conclude C � Z

Y

and

therefore C � Z

Y

because variables of � are pairwise non-bisimilar.

A similar argument can be used to prove that Z

Y

is reachable from each P 2 Assoc(Y ).

As P is normed, there is a norm reducing sequence s 2 Act

�

such that P

s

! P

0

where P

0

2

Var(�); jP

0

j = 1 (see Remark ??). As P � Z

jP j

Y

and Z

jP j

Y

can match the sequence s in only one

way (s is norm reducing), we have Z

jP j

Y

s

! Z

Y

with P

0

� Z

Y

. This implies P

0

� Z

Y

because �

is reduced.

It remains to check that if a� is a summand of the de�ning equation for Z

Y

in � then

� � Z

j�j

Y

. But each variable V 2 � is reachable from Z

Y

and Z

Y

is reachable from Y - thus V

is reachable from Y and hence V 2 Assoc(Y ). It means that V � Z

jV j

Y

(for each V 2 �) and

therefore � � Z

j�j

Y

. 2

Notation remark 2 In the rest of this paper the notation Z

Y

where Y 2 Var(�) is a growing

variable always denotes the unique variable of Lemma ??.

Lemma 4 Let � be a normed reduced BPP process in 3-GNF such that � 2 nBPA \ nBPP.

Let AkB be a reachable state of � such that A 2 Assoc(Y ) and B 2 Assoc(Q) for some growing

variables Y;Q 2 Var(�). Then Z

Y

� Z

Q

.

7



Proof: As � is reduced, it su�ces to prove that Z

Y

� Z

Q

. As A 2 Assoc(Y ), the state Z

Y

is reachable from A (due to Lemma ??). Similarly, Z

Q

is reachable from B and hence the state

Z

Y

kZ

Q

is a reachable state of �. Now we prove that for each i 2 N there is a reachable state

Z

Y

k�

i

of � such that Z

Y

kZ

i

Q

� Z

Y

k�

i

. The state Z

Q

is non-regular and � is normed - hence

we can use Lemma ?? and conclude that Z

Q

can reach a state �

i

such that j�

i

j = i. Thus the

state Z

Y

k�

i

is a reachable state of �. All variables from �

i

belong to Assoc(Y ) (because they

are reachable from Z

Q

and Z

Q

is reachable from Q - see Lemma ??), hence �

i

� Z

j�

i

j

Q

.

Let m = maxfjV j; V 2 Var(�

0

)g. As � 2 nBPA \ nBPP, there is a normed BPA process

�

0

in GNF such that � � �

0

. The state Z

Y

k�

m

is a reachable state of � and therefore there

must be a reachable state  of �

0

such that Z

Y

k�

m

�  and hence also Z

Y

kZ

m

Q

� . Moreover,

 is a sequence of at least two variables.

Now we can use a similar construction as in the proof of Lemma ?? and conclude that

Z

Y

kZ

j

Q

� Z

j+1

Q

for some j 2 N . This implies Z

Y

� Z

Q

. 2

Lemma 5 Let � be a normed reduced BPP process in 3-GNF such that � 2 nBPA \ nBPP.

Let LkA be a reachable state of � such that L is a lonely variable. Then A is a regular process.

Proof: Let us assume that A is not regular. Then A

w

! Y , where w 2 Act

�

and Y 2 Var(�)

is a growing variable (see Proposition ??). But then LkA

w

! LkY , thus L 2 Assoc(Y ) - we have

a contradiction. 2

Proposition 4 Let � be a process from nBPA \ nBPP. Then there is a process �

0

in I-normal

form such that � � �

0

.

Proof: First we prove that if � is a normed BPP process from nBPA \ nBPP then there is

a normed BPP process �

0

in I-normal form such that � � �

0

. We can assume (w.l.o.g.) that

� is reduced and in 3-GNF. The process �

0

can be obtained by the following transformation of

de�ning equations of � (which can also add completely new variables and equations to �

0

): if

X

def

=

P

m

j=1

a

j

�

j

is a de�ning equation from � then X

def

=

P

m

j=1

T (a

j

�

j

) is added to �

0

, where

T is de�ned as follows:

� if card(�

j

) � 1 then T (a

j

�

j

) = a

j

�

j

� if card(�

j

) = 2 (i.e.�

j

= AkB) then there are three possibilities:

1. A 2 Assoc(Y ) ^ B 2 Assoc(Q) for some growing variables Y;Q 2 Var(�). Then

A � Z

jAj

Y

and B � Z

jBj

Q

(see Lemma ??). As AkB is a reachable state, we can

conclude (with the help of Lemma ??) that Z

Y

� Z

Q

- hence AkB � Z

jAj+jBj

Y

. Thus

T (a(AkB)) = a(Z

jAj+jBj

Y

).

2. A 2 Assoc(Y ) for some growing variable Y 2 Var(�) ^ B is lonely. But then A �

Z

jAj

Y

and as Z

Y

is not regular, A is not regular as well. As the state AkB is reachable

and B is lonely, it contradicts Lemma ??. Hence this case is in fact impossible (as

well as the case when A is lonely and B 2 Assoc(Q)).

3. A and B are lonely. Then A and B are regular (due to Lemma ??) and therefore

the state AkB is also regular. Each regular process can be represented in normal

form (see De�nition ??). Let �

AkB

be a regular process in normal form which is

bisimilar to AkB. We can assume (w.l.o.g.) that Var(�

AkB

) \Var(�

0

) = ;. We add

all equations from �

AkB

to �

0

and T (a(AkB)) = a:N where N is the leading variable

of �

AkB

.
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The described transformation preserves bisimilarity because T preserves bisimilarity - hence

� � �

0

. It remains to check that �

0

is in I-normal form. Clearly each summand of each

de�ning equation from �

0

is of the form which is admitted by I-normal form. If aZ

j

is a

summand of a de�ning equation in �

0

such that j � 2, then Z � Z

Y

for some growing variable

Y 2 Var(�). Let a� be a summand in the original de�ning equation for Z

Y

in �. We need to

show that each such summand must have been tranformed into aZ

j�j

Y

by T . But it is obvious

as each variable from � belongs to Assoc(Y ) (each such variable is reachable from Z

Y

and Z

Y

is reachable from Y - see Lemma ??). If � is composed of a single variable V , then V � Z

Y

because V � Z

Y

(due to Lemma ??) and � is reduced. Moreover, at least one summand in the

de�ning equation for Z

Y

in �

0

is of the form aZ

l

Y

where l � 2, because Z

Y

would be regular

otherwise.

To complete the proof we need to show that if � is a normed BPA process such that

� 2 nBPA \ nBPP then there is a normed BPA process �

0

in I-normal form such that � � �

0

.

As � 2 nBPA \ nBPP, there is a normed BPP process �

P

such that � � �

P

. As we just

proved, there is a normed BPP process �

0

P

in I-normal form such that � � �

P

� �

0

P

. But for

each BPP process in I-normal form it is possible to construct its bisimilar dual BPA process in

I-normal form (see Lemma ??) - hence �

0

P

can serve as �

0

. 2

Propositions ?? and ?? give us the �rst main theorem of this paper:

Theorem 1 (the classi�cation of nBPA \ nBPP) The class nBPA \ nBPP contais exactly

normed BPA (resp. BPP) processes in I-normal form (up to bisimilarity).

4 Deciding whether � 2 nBPA \ nBPP

In this section we prove that it is decidable whether a given normed BPA (resp. BPP) process

� belongs to nBPA \ nBPP, i.e. whether there is a normed BPP (resp. BPA) process �

0

such

that � � �

0

. Moreover, our algorithm is constructive.

Lemma 6 Let � be a normed BPP process in 3-GNF and let �

0

be a normed BPP process

in I-normal form such that � � �

0

. If AkB is a reachable state of � such that A (resp.B) is

non-regular, then there is exactly one simple variable Z 2 Var(�

0

) such that A � Z

jAj

(resp.B �

Z

jBj

).

Proof: Let us assume that e.g. the variable A is non-regular. Let n = maxfjV j; V 2 Var(�

0

)g.

As A is non-regular, it can reach a state of an arbitrary norm (see Lemma ??). Hence A

w

! �,

where w 2 Act

�

, � 2 Var(�)




such that j�j = n. The state �kB is a reachable state of � and

therefore there must be a reachable state � of �

0

such that �kB � �. As �

0

is in I-normal form,

its reachable states are of the form P

i

where P 2 Var(�

0

) and i 2 N [ f0g. Moreover, if i � 2

then P is a simple variable (see De�nition ??). As j�kBj > n and bisimilar processes must

have the same norm, we can conclude that � � Z

j�kBj

where Z 2 Var(�) is a simple variable.

As � is normed, �kB

v

! B where v 2 Act

�

is a norm reducing sequence of actions. The state

Z

j�kBj

can match the sequence v only by removing j�j copies of Z - hence Z

j�kBj

v

! Z

jBj

and

B � Z

jBj

. The variable Z is clearly unique because �

0

is reduced. 2

De�nition 11 (S(�) set) Let � be a normed BPP process in GNF. The set S(�) � Var(�)

is composed of all variables V such that jV j = 1, V is non-regular and if a� is a summand in

the de�ning equation for V in �, then � � V

j�j

.
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Lemma 7 Let � be a normed reduced BPP process in 3-GNF such that � 2 nBPA \ nBPP.

If a(AkB) is a summand in a de�ning equation of � such that A and B are non-regular, then

there is exactly one variable Z 2 S(�) such that AkB � Z

jAkBj

Proof: As � 2 nBPA \ nBPP, there is a normed BPP process �

0

in I-normal form such that

� � �

0

. Let n = maxfjV j; V 2 Var(�

0

)g. As AkB is a reachable state of � and variables A;B

are non-regular, there are simple variables Z

1

; Z

2

2 Var(�

0

) such that A � Z

jAj

1

and B � Z

jBj

2

(this is due to Lemma ??). As Z

1

; Z

2

are simple, the state Z

j

1

kZ

j

2

is reachable from Z

jAj

1

kZ

jBj

2

for any j 2 N (simple variables are growing and thus non-regular). Now choose j = n: as

AkB � Z

jAj

1

kZ

jBj

2

, the state AkB can reach a state � which is bisimilar to Z

n

1

kZ

n

2

. As � is a

reachable state of �, there must be a state � of �

0

such that � � �. Using the same argument

as in the proof of Lemma ?? we can conclude that � � Z

j�j

3

, where Z

3

2 Var(�

0

) is a simple

variable. Hence Z

n

1

kZ

n

2

� Z

j�j

3

and thus Z

1

� Z

3

� Z

2

. It implies Z

1

� Z

3

� Z

2

. To complete

the proof, it su�ces to realize that each simple variable of �

0

must be bisimilar to some variable

of S(�) (because each simple variable of �

0

is a reachable state of �

0

and � � �

0

). Moreover,

this variable is unique because � is reduced. 2

Lemma 8 Let � be a normed BPP process in 3-GNF. If a(AkB) is a summand in a de�ning

equation of � such that A is regular and B is non-regular (resp.A is non-regular and B is

regular), then � 62 nBPA \ nBPP.

Proof: Let us assume that � 2 nBPA \ nBPP. Then there is a normed BPP process �

0

in

I-normal form such that � � �

0

. As AkB is a reachable state of � and B is non-regular, we can

use Lemma ?? and conclude that A � Z

jAj

where Z 2 Var(�

0

) is a simple variable. As simple

variables are growing (see De�nition ?? and ??), they are also non-regular (see Proposition ??)

and hence the state Z

jAj

is also non-regular. It contradicts the regularity of A. The case when

A is non-regular and B is regular is handled in a similar way. 2

Proposition 5 Let � be a normed BPP process. It is decidable whether � 2 nBPA \ nBPP.

Moreover, if � 2 nBPA \ nBPP then a normed BPA process �

0

such that � � �

0

can be

e�ectively constructed.

Proof: Clearly � 2 nBPA \ nBPP i� there is a normed BPP process �

I

in I-normal form such

that � � �

I

. Now we describe an algorithm A which inputs � and outputs �

I

if such a �

I

exists, and answers NO otherwise. The algorithm A �rst checks whether � is regular. If so, it

constructs a bisimilar regular process in normal form which can serve as �

I

(see De�nition ??).

Now assume that � is not regular. A �rst constructs the set S(�) and then starts to trans-

form � into �

I

by the following tranformation of de�ning equations of �: if X

def

=

P

m

j=1

a

j

�

j

is

a de�ning equation of � then X

def

=

P

m

j=1

T (a

j

�

j

) is added to �

I

, where T is de�ned as follows:

� if card(�

j

) � 1 then T (a

j

�

j

) = a

j

�

j

� if card(�

j

) = 2 (i.e.�

j

= AkB) then there are three possibilities (A can determine which

one actually holds):

1. A and B are regular (see Remark ??). Then AkB is regular and A constructs a

bisimilar regular process �

AkB

in normal form such that Var(�) \ Var(�

AkB

) = ;.

De�ning equations of �

AkB

are added to �

I

and T (a

j

�

j

) = a

j

N where N is the

leading variable of �

AkB

.

10



2. A is regular and B is non-regular (resp.A is non-regular and B is regular). Then A

answers NO (see Lemma ??).

3. A and B are non-regular. Then A checks whether AkB � Z

jAkBj

for some Z 2 S(�).

If not then A answers NO (this is correct due to Lemma ??). Otherwise T (a

j

�

j

) =

a

j

Z

jAkBj

.

If the described transformation terminates successfully, then �

I

is in I-normal form and

� � �

I

. If A answers NO, then there is no normed BPP process in I-normal form which is

bisimilar to �. To obtain the BPA process �

0

we simply take �

I

(see Lemma ??). 2

Proposition 6 Let � be a normed BPA process. It is decidable whether � 2 nBPA \ nBPP.

Moreover, if � 2 nBPA \ nBPP then a normed BPP process �

0

such that � � �

0

can be

e�ectively constructed.

Proof: The technique is essentially the same as in the proof of Proposition ?? (it is slightly

more complicated). The proof is omitted due to the lack of space. 2

As an important consequence of Theorem ?? and Proposition ?? we obtain the following:

Theorem 2 Bisimilarity is decidable in the union of normed BPA and normed BPP processes.

Proof: Given two normed BPA (resp. BPP) processes, it is possible to check bisimilarity

using algorithms which were published in [?],[?],[?]. If we obtain a normed BPA process �

1

and a normed BPP process �

2

, then we run the algorithm A from Proposition ?? on �

2

. If A

answers NO then �

1

6� �

2

(due to Theorem ??). Otherwise we check bisimilarity between �

1

and �

0

2

, where �

0

2

is the output of A. 2

5 Conclusions and Future Research

We have examined the class nBPA \ nBPP of those transition systems which can be generated

by both normed BPA and BPP processes, i.e. the class of transition systems which can be

equivalently (up to bisimilarity) expressed within the syntax of normed BPA processes and that

of normed BPP processes as well. We have shown that this class is formed by exactly those

processes for which a bisimilar process in I-normal form exists (here 'I' stands for Intersection).

Also we have shown it is decidable whether for a given normed BPA (resp. BPP) process �

there exists a normed BPP (resp. BPA) process �

0

such that � � �

0

. Moreover, if the answer is

positive then the provided algorithm constructs this bisimilar process �

0

(in I-normal form). As

an immediate consequence the decidability of bisimulation equivalence in the union of normed

BPA and normed BPP processes is obtained.

We hope this work can be considered as one of the steps towards a solution of the open prob-

lem whether bisimilarity is decidable for PA processes. Furthermore, we would like to examine

deeper the relationship between classes of behaviours which are generated by di�erent types of

syntax (e.g. Petri nets and BPA) and provide similar results like in the case of normed BPA

and normed BPP processes - i.e. to classify the �semantical intersection� and design algorithms

which can test (constructively) the membership to this intersection for both types of syntax.

Last but not least corresponding complexity results should be provided.

Our result about classi�cation of nBPA \ nBPP might be of some interest from the point

of view of formal languages/automata theory as well. The I-normal form (for normed BPA
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processes) can be taken as a special type of CF grammars which generate languages of the form

R:(L

1

[ : : : [ L

n

), where R is regular and each L

i

can be generated by a CF grammar having

just one nonterminal and rules of the form Z ! aZ

k

; k � 0. Considering language equivalence

only, it is obvious that languages of the mentioned type R:(L

1

[ : : : [L

n

) can be recognized by

nondeterministic one counter automata. Hence our result on classi�cation of nBPA \ nBPP can

be considered as a re�nement of the result achieved in [?] on the context-freeness of languages

generated by Petri nets, as BPP processes form a proper subclass of Petri nets.
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